Our Roadmap to the Common Core State Standards for Mathematics

Angela Torres
Kathy Bradley
SFUSD School Planning Summit
March 2, 2013
The Common Core State Standards for Mathematics are different from the previous CA standards

- FOCUS
- COHERENCE
- RIGOR
Common Core State Standards

- Define the knowledge and skills students need for college and career
- Developed voluntarily and cooperatively by states; more than 40 states have adopted
- Provide clear, consistent standards in English language arts/literacy and mathematics

Source: www.corestandards.org
Old CA vs. CCSS

CST

- Grades 2-11, writing at 4th and 7th
- Only paper & pencil option
- Taken after 85% of the instructional days completed
- Only multiple choice
- Part of the state and federal accountability system

Proposed CCSS Assessments

- Grades 3-8 and 11, Grades 9 and 10 available for states that choose to use them
- Delivered via computer (Paper and pencil option available for 3 years) and are computer adaptive
- Taken during the final 12 weeks of school
- Performance tasks and comprehensive end-of-year computer adaptive assessment which will some selected response items
- Accountability system has not been established yet
OLD CA Standards Grade 3

- 3NS1.3: Identify the place value for each digit in numbers to 10,000
Released CST Problem: 3rd Grade

Which number has a 4 in the tens place and a 4 in the hundreds place?

A 6424
B 6244
C 4462
D 6442
Carol’s Numbers

Carol has three number cards.

4 7 2

1. What is the largest three-digit number Carol can make with her cards?

2. What is the smallest three-digit number Carol can make with her cards?

Explain to Carol how she can make the smallest possible number using her three cards.
CCSS.Math.Content.4.NBT.A.1 Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70 = 10$ by applying concepts of place value and division.
Common Core Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
What can we do now?

At Schools:
- Give Performance Tasks on CLA’s
- Provide space and time for teachers to score performance tasks and discuss student thinking
- Look for evidence of the Standards for Mathematical Practice in classrooms
- More student math talk in the classroom
What can we do now?

At Home:

- Ask your child to tell you WHY their answer works 😊
- Encourage your child to keep trying because that is a real life skill
- When your child is stuck, ask them “what questions would your teacher ask you?”
Where can I find more information?

- Council of Chief State School Officers
- CommonCoreTools
 http://commoncoretools.me/
- CA Department of Education
 http://www.cde.ca.gov/re/cc/
- Illustrativemathematics.org
- Insidemathematics.org
- PTA http://tinyurl.com/bdhdb9h
Thank you!!

- Angela Torres
 torresa4@sfusd.edu

- Kathy Bradley
 bradleyk1@sfusd.edu